

Kiwifruit Trunk Disease: understanding our biodiversity and risk

Joy Tyson 4 November 2020

Kiwifruit trunk disease

Kiwifruit trunk diseases were first reported in about 2000 and have since increased in incidence and visibility. These have variously been referred to as:

- » Vine decline
- » Vine decay
- » Swollen trunk disorder
- » Crown decay disorder
- » Kiwifruit wood decay

Symptoms

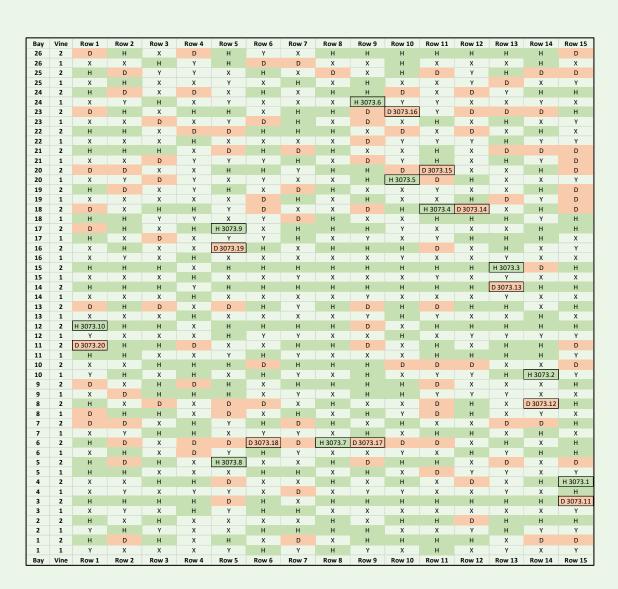
- » Crown decay
- » Swollen or uniformly enlarged trunks
- » Discrete swellings of trunks or leaders ('bulges' and cracking)
- » Cankers
- » Sparse canopies
- » Dieback
- » Sudden death
- » Stained/discoloured wood

BS19004 Emerging risk of vine decline

- » Project started early 2019
- » Which pathogens are associated with vine decline?
- » Focussed on the fungal group Nectriaceae
 - » Fusarium
 - » Cylindrocarpon-type
- » Overseas, this group of fungi has been associated with wood decays of kiwifruit
- » Previous work in New Zealand has also indicated that this group is likely to be involved in vine decline here.
- » Neonectria canker appearing in Motueka

Methods

- » Surveyed one block on each of three orchards
 - » Paengaroa
 - » Te Puke
 - » Motueka
- » Assessed the amount of visibly diseased vines
- » Sampled 'trunks' of 10 asymptomatic and 10 diseased vines
 - » bark at the base of the vines
 - » 30 cm woody cores
 - » 100 cm woody cores
 - » leader cankers (Motueka)
- » Isolations across the length of the woody cores


Incidence of kiwifruit trunk disease

How prevalent is it?

- » 18-34% of vines were visibly diseased
- » 2-22% appeared to be replacement vines
- » Removed vines not included
 - » Due to disease
 - » Planned turnover
- » True incidence is likely higher
- » Asymptomatic vines often had stained core samples

Symptom incidence

	# diseased vines	Collar rot	rot at/near graft	Swollen trunk	Swelling/ cracking of leader	Canker	Sparse canopy
Orchard 1 (Paengaroa)	117	63%	8%	34%	0%	2%	12%
Orchard 2 (Te Puke)	73	79%	8%	19%	0%	0%	10%
Orchard 3 (Motueka)	165	28%	10%	1%	47%	30%	4%

» The three blocks had different main symptoms

Fungal isolations

Q

- » What did we find?
- » Each orchard block was different
 - » Most common symptom
 - » Most common species
 - » Overlap between the three blocks
- » Many species within the Nectriaceae
- » 3 major groups were more prevalent in the diseased vines
 - » Neonectria microconidia
 - » Fusarium solani complex
 - » Ilyonectria species group

Identifications

- » Clonostachys sp.
- » Dactylonectria sp.
- » Mariannea sp.
- » Thelonectria sp.
- » Fusarium avenaceum
- » Fusarium cerealis
- » Fusarium equiseti
- » Fusarium oxysporum
- » Fusarium solani complex
- » Fusarium sp.
- » Fusarium venenatum
- » Ilyonectria europaea
- » Ilyonectria liriodendri
- » Ilyonectria robusta
- » Ilyonectria sp.
- » Ilyonectria torresensis
- » Neonectria microconidia

Neonectria microconidia

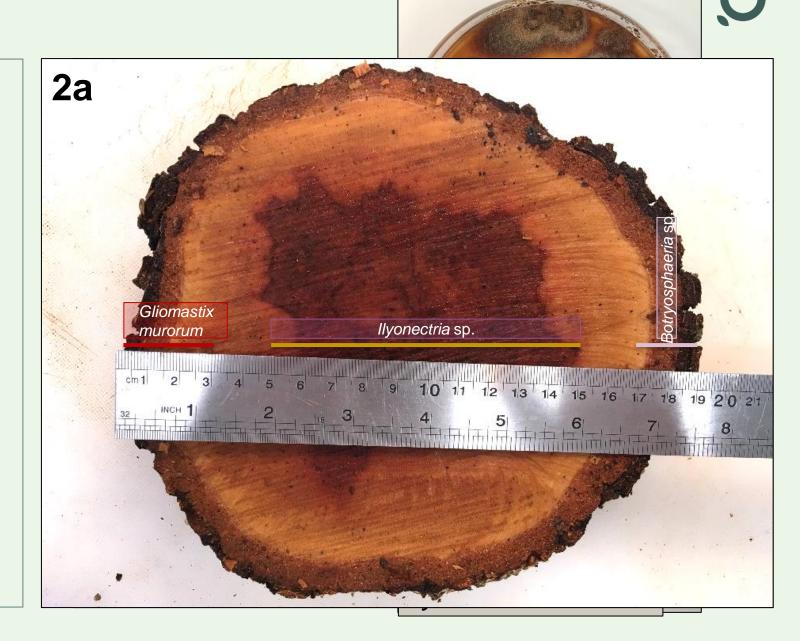
Neonectria microconidia

- Neonectria canker of kiwifruit

Close relative of Neonectria ditissima

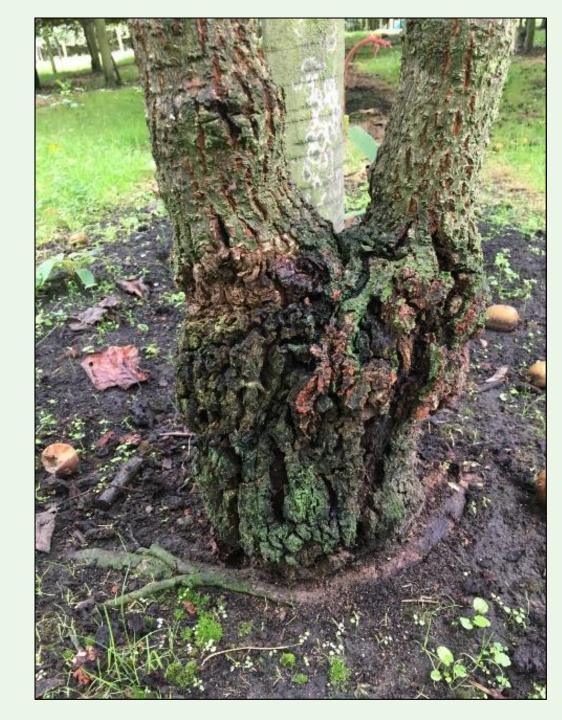
- European canker of apple

- » Found in all 3 orchards
- » Not always associated with symptoms
- » Cankers in Motueka
- » Causes fruit rots of kiwifruit


Ilyonectria species

Four *Ilyonectria* species found in kiwifruit wood

- » Ilyonectria europaea
- » Ilionectria liriodendri
- » Ilyonectria robusta
- » Ilyonectria torresensis


Ilyonectria species:

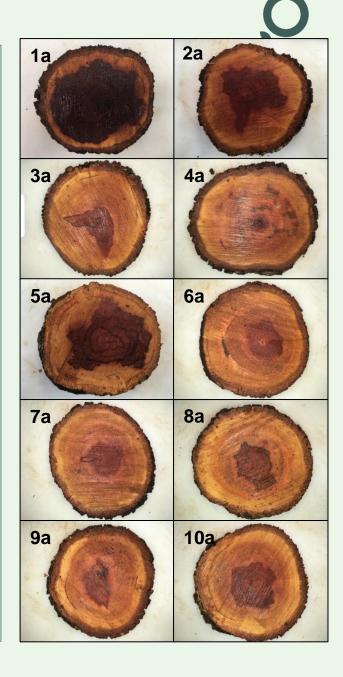
- » Black foot of grapevines
- » Overlapping set of species
- » Root or crown disease
- » Pathogenicity unknown

Fusarium solani complex

- » F. solani in all 3 orchards
- The major group in the diseased vines of Orchard 2
- » Well-known pathogen
- » Previously found associated with sudden death of vines in several orchards
- » Tends to be the major organism found in cross-sections of the trunks of these vines
- » Genetic diversity within the group of Fusarium solani isolates from the 3 orchards.

Pathogenicity testing

Q


- » Status as pathogens of kiwifruit are unknown
- » Are they opportunistic?
- » Are these fungi causing or contributing to the disease?
- » Which are most aggressive?
- This uncertainty is currently being assessed in other projects for *Neonectria microconidia* and for the *Ilyonectria* species group – pathogenicity testing is already in progress for these.
- » Testing needs to be done across the range of the Fusarium solani complex
 - » Wide genetic diversity
 - » More adaptable
 - » More difficult to control

Kiwifruit trunk diseases (KTDs)

- » Trunk diseases of kiwifruit are a complex problem, likely caused by a complex of fungi.
- » Similar to GTDs (grapevine trunk disease)
 - » 100 years of research
 - » Increasing in incidence
 - » Still a limiting factor for grape production
- » Barely scratching the surface. Needs research to unlock:
 - » the different fungal combinations involved
 - » sequence of infection, source of inoculum, species epidemiology
 - » other fungi that are not in the Nectriaceae e.g. Neobulgaria alba (Orchard 1)
 - » effect of cultivar, rootstock, orchard age, environment
 - » points of intervention, control
 - » What we have (current biodiversity)
 - » What is new (incursions)

KTD management

(current KVH recommendations)

- » Regular orchard monitoring. Tag vines with unusual symptoms, avoid these when conducting orchard practices that involve open wounds on trunks and leaders.
- » It is unlikely that seriously affected vines can be cured (e.g. significant trunk damage). These vines should be removed and replaced, and a replanting strategy developed.
- In some cases, infections isolated to leaders may be managed by removing the affected part of the plant and re-developing a replacement leader (e.g. *Neonectria* cut-out).
- » Tool hygiene is key. Sanitise tools as often as possible. Ideally between vines, but between rows or blocks should be routine. Always sterilise tools before entering a different orchard.
- » The use of wound protectants containing fungicides should be used to protect wounds where possible, particularly in orchards where there is evidence of vascular diseases.
- » Report the unusual!

Acknowledgements:

Zespri and KVH Growers and orchard managers Kieran Mellow and Kai Lewis (PFR) Hayley Ridgway and team (PFR)

plantandfood.co.nz

Joy.Tyson@plantandfood.co.nz

